

Usage and Customization Guide

OpenL Tablets Rule Service
Release 5.22

Document number: TP_OpenL_WebServices_UCG_2.6_LSh

Revised: 03-09-2020

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 5

1.1 Audience .. 5
1.2 How This Guide Is Organized ... 5
1.3 Related Information .. 6
1.4 Typographic Conventions .. 6

2 Introduction ... 7

3 OpenL Tablets Rule Service ... 9

3.1 Adding Dependencies into the Project .. 9
3.2 Configuring Spring Integration for OpenL Tablets Rule Service .. 9

Adding a Bean Configuration File to the Spring Context Definition .. 9
Simple Java Frontend Implementation ... 9

3.3 Customizing and Configuring OpenL Tablets Rule Service .. 10

4 OpenL Tablets Web Services Configuration .. 11

4.1 OpenL Tablets Web Services Default Configuration ... 11
4.2 OpenL Tablets Web Services Default Configuration Files ... 11
4.3 Service Manager .. 12
4.4 Configuration Points .. 12

Configuring a Data Source ... 13
Configuring System Settings ... 18
Configuring a Number of Threads to Rules Compilation .. 20
Logging Requests to OpenL Tablets Web Services and Their Responds ... 20
Configuring REST Services Settings ... 21
Configuring RMI Services Settings ... 22
Configuring Aegis Databinding .. 22
Configuring the Instantiation Strategy .. 22
Configuring the Deployment Filter.. 22

5 OpenL Tablets Web Services Customization ... 23

5.1 OpenL Tablets Web Services Customization Algorithm .. 23
5.2 Service Configurer ... 24

Understanding Service Configurer .. 24
Deployment Configuration File Used by Service Configurer ... 25
Service Description .. 26
Data Type Representation in REST .. 26

5.3 Multimodule with Customized Dispatching .. 27
5.4 Dynamic Interface Support .. 27
5.5 Interface Customization through Annotations .. 28

Interceptors for Service Methods ... 29
Endpoint Customization in REST ... 31
Annotation Customization for Dynamic Interfaces ... 32
Understandings Groups in Annotations .. 33

5.6 JAR File Data Source .. 33
5.7 Data Source Listeners .. 34
5.8 Service Publishing Listeners .. 34

OpenL Tablets Rule Service Usage and Customization

5.9 Variations ... 35
Variation Algorithm ... 35
Predefined Variations ... 36
Variations Factory ... 36
Variations as Rules .. 37
Example ... 37

6 Appendix A: Tips and Tricks .. 39

6.1 Using OpenL Tablets Web Services from Java Code .. 39
6.2 Using OpenL Tablets REST Services from Java Code ... 40

Appendix B: Types of Exceptions in OpenL Tablets Web Services ... 41

Appendix C: Swagger Support .. 43

OpenL Tablets Rule Service Usage and Customization Preface

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 5 of 43

1 Preface
OpenL Tablets is a Business Rules Management System (BRMS) based on the tables presented in Excel and Word
documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing business
logic specifications as executable source code.

OpenL Tablets provides a set of tools addressing BRMS related capabilities including OpenL Tablets Web Services
application designed for integration of business rules into different customers’ applications.

The goal of this document is to explain how to configure OpenL Tablets Rule Service, that is, configure OpenL
Tablets Web Services application or integrate the OpenL Tablets Rule Service module into the existing
application, for different working environments and how to customize the services to meet particular customer
requirements.

The following topics are included in this chapter:

• Audience

• How This Guide Is Organized

• Related Information

• Typographic Conventions

1.1 Audience
This guide is targeted at rule developers who integrate the OpenL Tablets Rule Service module and set up,
configure, and customize OpenL Tablets Web Services to facilitate the needs of customer rules management
applications.

Basic knowledge of Java, Apache Tomcat, Ant, Maven, and Excel is required to use this guide effectively.

1.2 How This Guide Is Organized
Information on how to use this guide

Section Description

Introduction Provides overall information about OpenL Tablets Web Services
application.

OpenL Tablets Rule Service Introduces OpenL Tablets Rule Service functionality.

OpenL Tablets Web Services Configuration Describes the configuration of OpenL Tablets Web Services for different
environments.

OpenL Tablets Web Services Customization Explains how to customize OpenL Tablets Web Services to meet
customers’ needs and requirements.

Appendix A: Tips and Tricks Describes how to use OpenL Tablets Web Services from Java code.

Appendix B: Types of Exceptions in OpenL
Tablets Web Services

Explains typical exceptions in OpenL Tablets Web Services.

Appendix C: Swagger Support Introduces Swagger and its usage in OpenL.

OpenL Tablets Rule Service Usage and Customization Preface

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 6 of 43

1.3 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Describes OpenL WebStudio, a web application for managing OpenL
Tablets projects through web browser.

[OpenL Tablets Reference Guide] Provides overview of OpenL Tablets technology, as well as its basic
concepts and principles.

[OpenL Tablets Installation Guide] Describes how to install and set up OpenL Tablets software.

http://openl-tablets.org/ OpenL Tablets open source project website.

1.4 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold • Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons, perspectives,
tabs, tooltip labels, tree elements, views, and windows.

• Represents keys, such as F9 or CTRL+A.

• Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic • Represents any information to be entered in a field.

• Represents documentation titles.

< > Represents placeholder values to be substituted with user specific values.

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Installation%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Rule Service Usage and Customization Introduction

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 7 of 43

2 Introduction
Many OpenL Tablets rule management solutions need to expose business rules as web services. Each solution
usually has a unique structure of the rules and implies a unique structure of web services. To meet requirements
of a variety of customer project implementations, OpenL Tablets Web Services provides the ability to
dynamically create web services for customer rules and offers extensive configuration and customization
capabilities.

Overall architecture of OpenL Tablets Web Services frontend is expandable and customizable. All functionality is
divided into pieces; each of them is responsible for a small part of functionality and can be replaced by another
implementation.

Figure 1: Overall OpenL Tablets Web Services architecture

OpenL Tablets Web Services application provides the following key features and benefits:

• easily integrating customer business rules into various applications running on different platforms

• using different data sources, such as a central OpenL Tablets production repository or file system of a proper
structure

• exposing multiple projects and modules as a single web service according to a project logical structure

OpenL Tablets Rule Service Usage and Customization Introduction

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 8 of 43

The subsequent chapters describe how to set up a data source, Service Configurer, and a service exposing
method, and how to integrate OpenL Tablets into the existing application.

The OpenL Tablets Web Services application is based on OpenL Tablets Rule Service and supports all features
that provided by OpenL Tablets Rule Service module.

The following diagram identifies all components to be configured and customized.

Figure 2: Configurable and customizable components of OpenL Tablets Rule Service

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Rule Service

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 9 of 43

3 OpenL Tablets Rule Service
This section introduces OpenL Tablets Rule Service functionality and includes the following topics:

• Adding Dependencies into the Project

• Configuring Spring Integration for OpenL Tablets Rule Service

• Customizing and Configuring OpenL Tablets Rule Service

3.1 Adding Dependencies into the Project
To use the OpenL Tablets Rule Service within Maven, declare the module dependencies in the project object
model (POM) as described in the following example:

<dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId> org.openl.rules.ruleservice</artifactId>

 <version>${openl.version}</version>

</dependency>

If Apache Maven is not used in the project, it is recommended to download all dependencies via Maven and add
all downloaded dependencies into the existing project classpath.

3.2 Configuring Spring Integration for OpenL Tablets Rule
Service

This section describes how to configure Spring and OpenL Tablets Rule Service integration and includes the
following topics:

• Adding a Bean Configuration File to the Spring Context Definition

• Simple Java Frontend Implementation

Adding a Bean Configuration File to the Spring Context Definition

To support the OpenL Tablets Rule Service features, add the openl-ruleservice-beans.xml bean configuration
file into the application Spring context definition. An example is as follows:
<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <import resource="classpath:openl-ruleservice-beans.xml" />

</beans>

After adding the OpenL Tablets Rule Service beans, Spring configuration has a simple Java frontend service as a
default publisher for all OpenL Tablets services.

Simple Java Frontend Implementation

Spring configuration of the bean used for simple Java frontend implementation is as follows:

<!-- Simple front end to access all services. -->

<bean id="frontend" class="org.openl.rules.ruleservice.simple.RulesFrontendImpl"/>

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Rule Service

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 10 of 43

<!-- Initializes OpenL Engine instances according to OpenL Tablets Web Services configuration

 description and calls DeploymentAdmin to expose corresponding web service. -->

<bean id="ruleServicePublisher"

class="org.openl.rules.ruleservice.simple.JavaClassRuleServicePublisher">

 <property name="frontend" ref="frontend"/>

</bean>

The frontend bean implements the org.openl.rules.ruleservice.simple.RulesFrontend interface. This
bean is designed to interact with deployed OpenL Tablets services.

Method in org.openl.rules.ruleservice.simple.RulesFrontend

Inceptor Description

Object execute(String serviceName, String

ruleName, Class<?>[] inputParamsTypes, Object[]

params)

Invokes a rule with defined parameter types and
parameter values from the deployed OpenL Tablets
service.

Object execute(String serviceName, String

ruleName, Object... params)
Invokes a rule with defined parameter values from the
deployed OpenL service. Parameter types are
automatically defined from send parameters.

Object getValue(String serviceName, String

fieldName)
Returns field value from the defined OpenL Tablets
service.

Collection<String> getServiceNames() Returns a list of registered OpenL Tablets services.

void registerService(OpenLService service) Registers the OpenL Tablets service.

void unregisterService(String serviceName) Unregisters the OpenL Tablets service.

<T> T buildServiceProxy(String serviceName,

Class<T> proxyInterface)
Builds a proxy for the OpenL Tablets service with a
defined interface.

T> T buildServiceProxy(String serviceName,

Class<T> proxyInterface, ClassLoader classLoader)
Builds a proxy for the OpenL Tablets service with a
defined interface and defined class loader.

To inject the frontend bean into the application beans or build a new proxy bean and use it in the application,
proceed as described in the following example:

<bean id="service1" class="org.openl.rules.ruleservice.simple.OpenLServiceFactoryBean">

 <!-- <property name="rulesFrontend" ref="frontend"/> optional. For custom

implementation of RulesFrontend -->

 <property name="serviceName" value="service1"/>

 <property name="proxyInterface" value="com.myproject.Service1"/>

</bean>

In this example, serviceName is a deployed OpenL Tablets service name and proxyInterface is deployed
service interface or an interface similar to the OpenL Tablets service rules.

Note: Proxy beans and proxy objects created by frontend bean are automatically updated if the OpenL Tablets service is
redeployed into a data source. Nevertheless, these objects are not working while the project is redeployed. To
synchronize this process, use Service Publisher listeners described in further sections.

3.3 Customizing and Configuring OpenL Tablets Rule Service
The OpenL Tablets Rule Service module configuration features resemble configuration features for the OpenL
Tablets Web Services application. The OpenL Tablets Web Services customization and configuration information
is provided in this document and can be applied to OpenL Tablets Rule Service in the same way. For the list of
components supported only by OpenL Tablets Web Services application, see diagrams in Introduction.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 11 of 43

4 OpenL Tablets Web Services Configuration
OpenL Tablets Web Services architecture allows extending mechanisms of services loading and deployment
according to the particular project requirements.

This section describes OpenL Tablets Web Services configuration and includes the following topics:

• OpenL Tablets Web Services Default Configuration

• OpenL Tablets Web Services Default Configuration Files

• Service Manager

• Configuration Points

4.1 OpenL Tablets Web Services Default Configuration
All OpenL Tablets Web Services configuration is specified in Spring configuration files and
application.properties files. The application.properties file is located inside the application .war file

(inside WEB-INF/classes folder), in a user’s directory or in a working directory.

The file located inside .war file is generated with default settings. You can use it as a reference of possible
settings and redefine needed ones in your configuration file (for example application.properties file located in a
user’s home directory).

The settings can be defined as JVM options for Tomcat launch. In this case, JVM options override settings from
application.properties file.

By default, OpenL Tablets Web Services application is configured as follows:

1. A data source is configured as FileSystemDataSource located in the "${user.home}/.openl/datasource"
folder.

2. All services are exposed using the CXF framework inside the OpenL Tablets Web Services war file that can be
downloaded at http://openl-tablets.org/downloads.

3. All calls are processed by CXF servlet.

4. LastVersionProjectsServiceConfigurer is used as a default service configurer that takes the last version
of each deployment and creates the service for each project using all modules contained in the project.

4.2 OpenL Tablets Web Services Default Configuration Files
If necessary, modify the OpenL Tablets Web Services configuration by overriding the existing configuration files.
All overridden beans must be located in the openl-ruleservice-override-beans.xml file. The following table
lists default OpenL Tablets Web Services configuration files:

Default OpenL Tablets Web Services configuration files

File Description

openl-ruleservice-beans.xml Main configuration file that includes all other
configuration files. This file is searched by OpenL
Tablets Web Services in the classpath root.

openl-ruleservice-datasource-beans.xml File storing data source configuration.

openl-ruleservice-loader-beans.xml File storing loader configuration.

http://openl-tablets.org/downloads

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 12 of 43

Default OpenL Tablets Web Services configuration files

File Description

openl-ruleservice-publisher-beans.xml File storing common publisher configuration.

openl-ruleservice-webservice-publisher-beans.xml File storing publisher configuration for web services
(SOAP).

openl-ruleservice-jaxrs-publisher-beans.xml File storing publisher configuration for RESTful
services.

openl-ruleservice-rmi-publisher-beans.xml Contains publisher configuration for RMI services.

openl-ruleservice-conf-beans.xml File storing Service Configurer.

application.properties Main file containing properties for OpenL Tablets Web
Services configuration.

project-resolver-beans.xml Configuration for OpenL Tablets project resolving. It
stores beans for reading rules from the data source
specified in the loader.

For more information on configuration files, see Configuration Points.

4.3 Service Manager
Service Manager is the main component of OpenL Tablets Web Services frontend containing all major parts,
such as a loader, a rule service, and Service Configurer. For more information on OpenL Tablets Web Services
frontend components, see [OpenL Tablets Developer Guide].

Service Manager stores information about all currently running services and intelligently controls all operations
for deploying, undeploying, and redeploying the services. These operations are only performed in the following
cases:

• initial deployment at startup of the OpenL Tablets Web Services frontend

• processing after data source update

Service Manager always acts as a data source listener as described in further sections of this chapter.

4.4 Configuration Points
Any part of OpenL Tablets Web Services frontend can be replaced by the user’s own implementation. For more
information on the system architecture, see [OpenL Tablets Developer Guide].

If the common approach is used, the following components must be configured:

Configuration components

Component Description

Data source Informs the OpenL Tablets system where to retrieve user’s rules.

Service exposing method Defines the way services are exposed, for example, as a web service or a simple Java
framework.

The following sections describe how to configure these components:

• Configuring a Data Source

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 13 of 43

• Configuring System Settings

• Configuring a Number of Threads to Rules Compilation

• Logging Requests to OpenL Tablets Web Services and Their Responds

• Configuring REST Services Settings

• Configuring RMI Services Settings

• Configuring Aegis Databinding

• Configuring the Instantiation Strategy

• Configuring the Deployment Filter

Note: There is a specific rule of parsing parameter names in methods. The algorithm checks the case of the second letter in
a word and sets the first letter case the same as for the second letter. For example, parameters for MyMethod
(String fParam, String Sparam) in REST requests are defined as FParam and sparam.

Configuring a Data Source

The system supports the following data source implementations:

• JCR Repository

• Database Repository

• File System Data Source

• Amazon AWS S3 Repository

• Version in Deployment Name

• Service Exposing Method

JCR Repository

This type of the repository is deprecated. Use a database repository instead as described in Database
Repository.

To use a JCR repository as a data source, proceed as follows:

1. Locate the application.properties file.

By default, this file is stored in the <TOMCAT_HOME>\webapps\<web services file name>\WEB-
INF\classes directory.

2. Define all JCR repository settings.

The main property in JCR repository settings is production-repository.factory that defines the repository
access type in one of the following ways:

Repository access type definitions

Definition Description

Local
repository

Located on the user’s local machine as a folder.

The repository factory must be as follows:
production-repository.factory =

org.openl.rules.repository.factories.LocalJackrabbitRepositoryFactory

Additional property that defines JCR repository location is as follows:
production-repository.uri = /<OPENL_HOME>/deployment-repository

Note: Only one application can use a local repository at a time. That is, OpenL Tablets Web Services and
OpenL Tablets WebStudio cannot be used with a local repository at the same time. If multiple
applications need to access a repository, remote access to the repository must be provided for all
applications.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 14 of 43

Repository access type definitions

Definition Description

Remote
repository

Located on a remote server.

A recommended way to install and configure a remote repository is as follows:

1. Download all sources related to the JCR repository at http://openl-tablets.org/downloads, the
Repository ZIP file link.

A repository package contains a repository server and an empty JCR repository.

2. Copy the openl-tablets-remote-repository-server-X.X.X.war file from the repository
package to the \<TOMCAT_HOME>\webapps directory.

3. If a secured remote JCR repository is used, define login and password and secret key in the
application.properties file.

Note: Remember that the Jackrabbit war file must be run before the OpenL Tablets Web Services war
file. Tomcat runs war files alphabetically.

A remote repository can be accessed by the following protocols:

Protocols for accessing a remote repository

Protocol Description

RMI

To set up access to the repository, edit the bootstrap.properties file located in the jackrabbit folder
inside the openl-tablets-remote-server-X.X.X.war file. The bootstrap.properties file contains
settings indicating where the repository is located, and the URL which must be used for remote access as
follows:

• repository.home={the folder where user’s production repository is located}

• rmi.url={URL for remote access to the repository}, for example,
//localhost:1099/deployment-repository

The repository factory must be as follows:
production-repository.factory =

org.openl.rules.repository.factories.RmiJackrabbitRepositoryFactory

Additional property that defines the remote repository location is as follows:
production-repository.uri = //localhost:1099/deployment-repository

WebDav The repository factory must be as follows:
production-repository.factory =

org.openl.rules.repository.factories.WebDavRepositoryFactory

Additional property that defines the remote repository location is as follows:
production-repository.uri = http://localhost:8080/deployment-repository

Security: If a secured remote JCR repository is used, define login and password and secret key in the
application.properties file.

Attention! A problem can arise if one instance of Tomcat is used for both web archives, that is, jackrabbit-
webapp and the OpenL Tablets Web Services war file. Tomcat will stop working upon startup because of OpenL
Tablets Web Services trying to connect to the data source on startup. For the JCR remotely using WebDav case,
this means that there are connections by the datasource URL. Tomcat applies such connections and waits until
all web applications are deployed. This causes a deadlock, since OpenL Tablets Web Services tries to connect to
another application, which cannot respond before OpenL Tablets Web Services is deployed.

To resolve the issue, use one of possible solutions:

1. Use several Tomcat instances, one for Jackrabbit-webapp, and another for OpenL Tablets Web Services.

http://openl-tablets.sourceforge.net/downloads
http://multitran.ru/c/m.exe?t=744093_1_2

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 15 of 43

2. Use another application server, such as WebSphere, which supports access to web applications deployed
before all other web applications are started.

Database Repository

To use a database repository as a data source, proceed as follows:

1. Add the appropriate driver library for a database.

For example, for MySQL 5.6, it is the mysql-connector-java-5.1.31.jar library and it is already located in
webstudio.war.

2. Locate the application.properties file.

3. In the application.properties file set database repository settings as follows.

1. Comment the setting production-repository.factory =
org.openl.rules.repository.factories.LocalJackrabbitRepositoryFactory.

2. Define production-repository.factory =
org.openl.rules.repository.db.JdbcDBRepositoryFactory.

3. Set the value for production-repository.uri according to the database as follows:

URL value for databases

Database URL value

MySQL,
MariaDB

jdbc:mysql://[host][:port]/[schema]

Oracle jdbc:oracle:thin:@//[HOST][:PORT]/SERVICE

MS SQL jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;property=value[;p

roperty=value]]

PostrgeS
QL

jdbc:postrgesql://[host][:port]/[schema]

For example, for MySQL, production-repository.uri =
jdbc:mysql://localhost:3306/deployment-repository.

4. Set login and password for connection to the database defined while installing the database

production-repository.login and production-repository.password.

Note: The password must be encoded via Base64 encoding schema when repository.encode.decode.key is also
defined.

Figure 3: Settings for connection to the database production repository in application.properties

If a user does not use OpenL WebStudio deploy functionality to locate a project with rules in the database
repository, use the deploy(File zipFile, String config) method of the
ProductionRepositoryDeployer.class in the WEB-INF\lib\org.openl.rules.workspace-5.X.jar library.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 16 of 43

The method parameter zipFile contains the address to the project zip file and the config parameter sets the
location of the deployer.properties file, containing the same properties as described previously.

File System Data Source

Using a file system as a data source for user projects means that projects are stored in a local folder. This folder
represents a single deployment containing all the projects. This is the default data source configured in the
system.

To configure a local file system as a data source, proceed as follows:

1. Locate the <TOMCAT_HOME>\webapps\<web services file name>\WEB-INF\classes directory.

2. In the application.properties file, set the ruleservice.datasource.type property to local.

This type of data source does not support deployment and versioning by default.

3. To enable deployment and versioning, do the following:

• To enable deployment support, set the ruleservice.datasource.filesystem.supportDeployments
property to true.

• To enable versioning support for deployment, set the
ruleservice.datasource.filesystem.supportVersion property to true.

Users can also pack their rule projects in a jar file and use this file as a data source as described in JAR File Data
Source.

Note: For proper parsing of Java properties file, the path to the folder must be defined with a slash (‘/’) as the folders
delimiter. Back slash “\” is not allowed.

Amazon AWS S3 Repository

To use an AWS S3 repository as a data source, proceed as follows:

1. To build a customized version of OpenL Tablets Web Services with dependencies on
*org.openl.rules.repository.aws v5.20.54 *, create a pom.xml file with the following content:
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.openl</groupId>

 <artifactId>webservice-aws</artifactId>

 <packaging>war</packaging>

 <version>1.0-beta</version>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <org.openl.version>5.21.5</org.openl.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.repository.aws</artifactId>

 <version>${org.openl.version}</version>

 </dependency>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.ws</artifactId>

 <type>war</type>

 <version>${org.openl.version}</version>

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 17 of 43

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.9.5</version>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>2.9.5</version>

 </dependency>

 <dependency>

 <artifactId>commons-codec</artifactId> <groupId>commons-

codec</groupId>

 <version>1.11</version>

 </dependency>

 </dependencies>

 </dependencyManagement>

</project>

2. Locate the <TOMCAT_HOME>\webapps\<web services file name>\WEB-INF\classes directory and add the
following properties to the application.properties file:
production-repository.factory = org.openl.rules.repository.aws.S3Repository

production-repository.bucket-name = yourBucketName

production-repository.region-name = yourS3Region

production-repository.access-key = yourAccessKey

production-repository.secret-key = yourSecretKey

Version in Deployment Name

If the Deployment repository is created in an OpenL Tablets version older than 5.20, the Version in deployment
name option must be enabled for backward compatibility.

The 5.20 version of the OpenL Tablets Deployment Repository contains only actual deployments which are
exposed as services. Each new deployment updates the current deployment, while older versions are hidden in
history and cannot be loaded into the RuleService directly. Different API versions of services are located in
different deployments. They are distinguished by a suffix generated in OpenL Tablets WebStudio according to
the API version in rules-deploy.xml. As a result, services are exposed more quickly. However, if a user created
a repository in the OpenL Tablets version older than 5.20 and migrated to a newer OpenL Tablets Web Services,
enable the Version in deployment name option to expose services correctly.

In this case, add the following property to the application.properties file:

version-in-deployment-name = true

If you create a new repository, omit this property or set it to false.

Service Exposing Method

Service exposing method specifies a method to expose user’s OpenL Tablets Web Services.

Common flow of service exposing is as follows:

1. Retrieve service descriptions that must be deployed using Service Configurer.

2. Undeploy the currently running services that are not in services defined by Service Configurer.

Some services can become unnecessary in the new version of the product.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 18 of 43

3. Redeploy currently running services that are still in services defined by Service Configurer, such as service
update.

4. Deploy new services not represented earlier.

To set the method of exposing services, configure a Spring bean with the ruleServicePublisher name in
openl-ruleservice-publisher-beans.xml.

This bean supports mapping a concrete publisher for service configuration or uses a default publisher if the
publisher is not defined in the OpenL Tablets project.

To implement a new publisher, use any framework by implementations of
org.openl.rules.ruleservice.publish.RuleServicePublisher interface and register it in the
ruleServicePublisher bean or use one of the following predefined implementations:

• CXF Web Services Implementation

• CXF REST Service implementation

• RMI Service Implementation

CXF Web Services Implementation

CXF Web Service Publisher implementation class is
org.openl.rules.ruleservice.publish.JAXWSRuleServicePublisher. The Spring configuration for CXF
Web Service Publisher is located in openl-ruleservice-webservice-publisher-beans.xml file.

Note: The full web service address is webserver_context_path/ws_app_war_name/address_specified_by_you.

CXF REST Services Implementation

CXF REST Service Publisher implementation class is
org.openl.rules.ruleservice.publish.JAXRSRuleServicePublisher. The Spring configuration for this
publisher is located in the openl-ruleservice-jaxrs-publisher-beans.xml file.

Note: The full web service address is
webserver_context_path/ws_app_war_name/REST/address_specified_by_you or
webserver_context_path/ws_app_war_name/address_specified_by_you. It depends on project
configuration.

RMI Services Implementation

RMI Service Publisher implementation class is
org.openl.rules.ruleservice.publish.RmiRuleServicePublisher. The Spring configuration for this
publisher is located in the openl-ruleservice-rmi-publisher-beans.xml file.

Note: The full RMI service address is rmi://hostname:port/address_specified_by_you.

Configuring System Settings

There are several options extending rules behavior in OpenL Tablets:

• Custom Spreadsheet Type

• Dispatching Table Properties

• Table Dispatching Validation Mode

These settings are defined in the application.properties configuration file.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 19 of 43

Custom Spreadsheet Type

In OpenL Tablets, custom spreadsheet type is used by default. To enable support of the previously created rules
based on other types, in the application.properties configuration file, set this property to false.

Dispatching Table Properties

Previously selecting tables that correspond to the current runtime context was processed by Java code. Now
rules dispatching is the responsibility of the generated Dispatcher decision table. Such table is generated for
each group of methods overloaded by dimension properties. The Dispatcher table works like all decision tables,
so the first rule matched by properties is executed even if there are several tables matched by properties.
Previously, in Java code dispatching, AmbiguousMethodException would be thrown in such case.

To support both functionalities, the dispatching.mode system property is introduced. It has the following
possible values:

dispatching.mode property values

Value Description

java Dispatching is processed by Java code. The benefit of such approach is stricter dispatching: if several tables
are matched by properties, AmbiguousMethodException is thrown.

dt Deprecated. Dispatching is processed by the Dispatcher decision table.

If the system property is not specified or if the dispatching.mode property has an incorrect value, the Java
approach is used by default.

Table Dispatching Validation Mode

An explanation of table dispatching validation is as follows.

Consider a rule table for which some business dimension properties are set up. There is only one version of this
rule table. The following table describes options of versioning functionality behavior for this case depending on
the dispatching.validation property value located in webstudio\WEB-INF\conf:

Value of dispatching.validation property

Value Versioning behavior description

True Versioning functionality works as for a rule that has only one version. OpenL Tablets reviews properties
values of this rule table and executes the rule if the specified properties values match runtime context.
Otherwise, the No matching methods for context error message is returned.

False OpenL Tablets ignores properties of this rule table, and this rule is always executed and returns the
result value despite of runtime context.

For table testing, dispatching validation is enabled by setting the dispatching.validation property value to
true. The property is located in the webservice\WEB-INF\classes\application.properties file. In this case,
versioning functionality works as for a rule that has only one version, and OpenL Tablets reviews properties
values of this rule table and executes the rule if the specified properties values match runtime context. In
production, this property value must be set to false.

By default, the dispatching.validation value is set to false in OpenL Tablets Web Services and to true in
OpenL WebStudio.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 20 of 43

Configuring a Number of Threads to Rules Compilation

The system supports parallel rules compilation. Rules compilation consumes a large amount of memory. If the
system tries to compile too many rules at once, it fails with an out of memory exception.

The setting that limits the amount of threads to compile rules is defined in the application.properties file.

By default, only three threads can compile rules in parallel:

ruleservice.instantiation.strategy.maxthreadsforcompile = 3

For example, to permit only one thread to compile rules, set value to one as follows:

ruleservice.instantiation.strategy.maxthreadsforcompile = 1

Logging Requests to OpenL Tablets Web Services and Their Responds

The system provides an ability to log all requests to OpenL Tablets Web Services and their responds. The setting
is defined in the application.properties file. The following topics describe logging setup and using Apache
Cassandra for log records storage:

• Enabling and Using Logging

• Storing Log Records on Apache Cassandra

Enabling and Using Logging

By default, logging is disabled:

ruleservice.logging.enabled = false

To enable logging, set ruleservice.logging.enabled = true.

OpenL Tablets Web Services supports storing requests and responses for SOAP and REST publishers in an
external storage. This feature supports using any external data source for storing log data or using the Apache
Casandra database out of the box. To enable this feature, set ruleservice.logging.store.enabled = true .

For each request to OpenL Tablets Web Services, the system creates a logging record, which is populated with
data during request processing and then can be stored in the required external storage. For logging records, the
org.openl.ruleservice.logging.LoggingInfo class is used. It contains the following data:

org.openl.ruleservice.logging.LoggingInfo class data

Field name Description

requestMessage Contains request data for logging, such as request body, URL, request header, and request
content type.

responseMessage Contains response data for logging, such as response body, response status, and response
header.

incomingMessageTime Time when request is received by the server.

outcomingMessageTime Time when response message preparing is complete, and the message is ready to be sent to
the client.

service OpenL Tablets service used for the call. Data includes service name, compiled OpenL Tablets
rules, and other information.

inputName Method used for the call.

parameters Parameters of the call, which is an array of objects after binding request message to models.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 21 of 43

When the logging data is collected, the system invokes the storing service responsible for saving logging data.
The storing service must implement the org.openl.ruleservice.logging.LoggingInfoStoringService
interface.

Storing Log Records on Apache Cassandra

The Apache Cassandra database can be used as external storage. To start using Apache Cassandra for log
storage, proceed as follows:

1. Download the zip archive for the applicable version of OpenL Tablets from this repository,
https://repo1.maven.org/maven2/org/openl/rules/org.openl.rules.ruleservice.ws.logging.cassandra/, and
unzip it to the folder webapps/<\<web services war file name>/WEB-INF/lib.

2. Set up Cassandra connection settings defined in the application.properties file as described in the
following table:

Connection settings defined in the cassandra.properties file

Property name Description

cassandra.contactpoint Connection points to the Cassandra node.

cassandra.port Port.

cassandra.keyspace Keyspace to be used.

3. Before creating a schema in Cassandra, create a keyspace as described in
https://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html.

4. To create a schema in the Cassandra database, start OpenL Tablets Web Services with the
ruleservice.logging.store.type.cassandra.shema.create = true property.

5. When the schema is created, set this property to the false value.

Otherwise, the application tries to recreate the schema and fails, because the schema is already created.

As a result, the following table with the LoggingRecord name is created in the Cassandra database:

LoggingRecord table created in the Cassandra database

Column name Type Description

ID TEXT Unique ID for the request. It is a primary key for the record.

INCOMINGTIME TIMESTAMP Incoming request time.

OUTCOMINGTIME TIMESTAMP Outgoing response time.

REQUEST TEXT Request body.

RESPONSE TEXT Response body.

INPUTNAME TEXT Input name.

URL TEXT URL of the request.

Configuring REST Services Settings

The system supports using HTTP 200 Status for all RESTful services requests.

The setting is defined in the application.properties file.

By default, this feature is disabled:

ruleservice.jaxrs.responseStatusAlwaysOK = false

To enable this feature, set ruleservice.jaxrs.responseStatusAlwaysOK = true.

https://repo1.maven.org/maven2/org/openl/rules/org.openl.rules.ruleservice.ws.logging.cassandra/
https://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Configuration

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 22 of 43

Configuring RMI Services Settings

The appropriate port and host name for RMI can be defined in the application.properties file.

By default, these settings are defined as follows:

ruleservice.rmiPort = 1099 // Port for RMI

ruleservice.rmiHost = 127.0.0.1 // Used as host for RMI

Configuring Aegis Databinding

The system provides an ability to configure Aegis databinding settings.

For more information on Aegis databinding, see CXF Aegis databinding documentation.

The setting is defined in the application.properties file.

The default settings are as follows:

ruleservice.aegisbinding.readXsiTypes = true

ruleservice.aegisbinding.writeXsiTypes = true

ruleservice.aegisbinding.ignoreNamespaces = false

Configuring the Instantiation Strategy

The system provides an ability to select an instantiation strategy.

The setting is defined in the application.properties file.

By default, the lazy initialization strategy is enabled:

ruleservice.instantiation.strategy.lazy = true

Modules are compiled upon the first request and can be unloaded in future for memory save.

To disable the lazy initialization strategy, set ruleservice.instantiation.strategy.lazy = false. All
modules are compiled on the application launch.

Configuring the Deployment Filter

The system provides the ability to set up the Deployment Filter to select deployments for installation in Web
Services from the datasource repository when several applications use the same datasource repository. Filtering
selects deployments by deployment name.

The settings are defined in the application.properties file.

By default, the Deployment Filter is disabled:

ruleservice.datasource.deployments =

To enable the Deployment Filter, set the exact deployment names using a comma separator, or use the wildcard
character to enable the filter to match patterns in the deployment name:

ruleservice.datasource.deployments = foo-deployment, bar-*

The wildcard character “*” matches any characters in the deployment name. You can use multiple asterisks.

• Single: any of these single wildcard character patterns will detect foo-deployment: foo-*, *deployment

• Multiple: any of these single wildcard character patterns will detect foo-deployment: *deploy*,
deployment

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 23 of 43

5 OpenL Tablets Web Services Customization
This section introduces general OpenL Tablets Web Services customization algorithm and explains the following
available customization points:

• OpenL Tablets Web Services Customization Algorithm

• Service Configurer

• Multimodule with Customized Dispatching

• Dynamic Interface Support

• Interface Customization through Annotations

• JAR File Data Source

• Data Source Listeners

• Service Publishing Listeners

• Variations

5.1 OpenL Tablets Web Services Customization Algorithm
If a project has specific requirements, OpenL Tablets Web Services customization algorithm is as follows:

1. Create a new Maven project that extends OpenL Tablets Web Services.

2. Add or change the required points of configuration.

3. Add the following dependency to the pom.xml file with the version used in the project specified:
<dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.ws</artifactId>

 <version>5.X.X</version>

 <type>war</type>

 <scope>runtime</scope>

</dependency>

4. Use the following Maven plugin to control the Web Application building with user’s custom configurations
and classes:
<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <warSourceDirectory>webapps/ws</warSourceDirectory>

 <!—Define war name here-->

 <warName>${war.name}-${project.version}</warName>

 <packagingExcludes>

 <!—Exclude unnecessary libraries from parent project here-->

 WEB-INF/lib/org.openl.rules.ruleservice.ws.lib-*.jar

 </packagingExcludes>

 <!—Define paths for resources. Developer has to create a file with the same name

to overload existing file in the parent project-->

 <webResources>

 <resource>

 <directory>src/main/resources</directory>

 </resource>

 <resource>

 <directory>war-specific-conf</directory>

 </resource>

 </webResources>

 </configuration>

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 24 of 43

</plugin>

Customization points are described in the following table:

Customization points

Point Description

Service Configurer Defines all services to be exposed and modules contained in each
service.

Multimodule with Customized Dispatching Provides a possibility to handle dispatching between modules.

Dynamic Interface Support Generates an interface for services at runtime.

Interface Customization through Annotations

JAR File Data Source Pack user’s rule projects into a jar file and places the archive in the
classpath.

Data Source Listeners

Service Publishing Listeners Used as a main publisher to support multiple publishers in the system.

Variations Additional calculation of the same rule with a slight modification in its
arguments.

5.2 Service Configurer
This section introduces Service Configurer and includes the following topics:

• Understanding Service Configurer

• Deployment Configuration File Used by Service Configurer

• Service Description

• Data Type Representation in REST

Understanding Service Configurer

Service Configurer defines all services to be exposed, such as modules contained in each service, the service
interface, and runtime context provision.

Modules for a service can be retrieved for different projects. Each deployment contained in a data source has a
set of properties and can be represented in several versions. Deployment consists of projects that also have
properties and contains some modules. There can be only one version of a specific project in the deployment.

Each module for a service can be identified by the deployment name, deployment version, project name inside
the deployment, and module name inside the module.

Users can implement different module gathering strategies according to their needs. Users can choose
deployments and projects with concrete values of a specific property, such as service for some LOB or service
containing modules with an expiration date before a specific date, or versions of deployments, or both these
approaches.

OpenL Tablets users typically need web services containing several rule projects or modules. In this case,
multiple modules can be united in one service using a simple service description. Service description contains all
information about the required service, such as the service name, URL, all modules that form the service, and
the service class, and can be expanded to contain new configurations. To instantiate several modules, users can
rely on the OpenL MultiModule mechanism that combines a group of modules as a single rules engine instance.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 25 of 43

Deployment Configuration File Used by Service Configurer

By default, OpenL Tablets Web Services uses LastVersionProjectsServiceConfigurer which deploys last
version projects from deployments. This implementation uses the service configuration rules-deploy.xml file
from the project root folder. This file can be created manually or via OpenL Tablets WebStudio. An example of
the rules-deploy.xml file is as follows:

<rules-deploy>

 <isProvideRuntimeContext>true</isProvideRuntimeContext>

 <isProvideVariations>false</isProvideVariations>

 <serviceName>myService</serviceName>

 <serviceClass>com.example.MyService </serviceClass>

 <url>com.example.MyService</url>

 <publishers>

 <publisher>RESTFUL</publisher>

 <publisher>WEBSERVICE</publisher>

</publishers>

<configuration>

 <entry>

 <string>someString</string>

 <string>someString</string>

 </entry>

 </configuration>

</rules-deploy>

Project configuration

Tag Description Required

isProvideRuntimeContext Identifies, if set to true, that a project provides a runtime context.

The default value is defined in the application.properties file.

No

isProvideVariations Identifies, if set to true, that a project provides variations.

The default value is defined in the application.properties file.

 No

serviceName Defines a service name. No

serviceClass Defines a service class. If it is not defined, a generated class is used. No

version Defines a service version.

url Defines URL for a service. No

annotationTemplateClassName Defines an interface being used as a template to annotate dynamic
generated class.

 No

groups Defines a list of comma-separated groups used for this project as
described in Understating Groups Annotations.

publishers Defines a list of publishers for a project. No

configuration Is used as extension point for custom service configuration. No

lazy-modules-for-compilation Defines a list of modules to be loaded in case lazy loading mechanism is
used. Module names can contain Ant path expressions.

 No

jacksondatabinding.enableSmart
Typing

Used to enable default typing. If the value is set to Enable, default typing
is enabled. If the value is Disable, default typing is disabled. If the value is
set to Smart, classes defined in the rootClassNamesBinding parameter
are used.

rootClassNamesBinding Defines a list of classes for smart typing.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 26 of 43

Service Description

Commonly each service is represented by rules and the service interface and consists of the following elements:

Service description

Service Description

Service name Unique service identifier.

Service URL URL path for the service. It is absolute for the console start and relative to the
context root for the ws.war case.

Service class Interface of the service to be used at the server and the client side.

Version Number of the service version.

Rules Module or a set of modules to be combined together as a single rules module.

Provide runtime context flag Identifier of whether the runtime context must be added to all rule methods. If

it is set to true, the IRulesRuntimeContext argument must be added to

each method in the service class.

Support variations flag (optional) Identifier of whether the current service supports variations. For more
information on variations, see Variations.

Users can create their own implementation of Service Configurer interface
org.openl.rules.ruleservice.conf.ServiceConfigurer and register it as a Spring bean with the
serviceConfigurer name, or use one of the following implementations provided by OpenL Tablets Web
Services:

• org.openl.rules.ruleservice.conf.SimpleServiceConfigurer

It is designed for use with a data source having one deployment. It exposes deployment and creates service
for one predefined project in this deployment.

• org.openl.rules.ruleservice.conf.LastVersionProjectsServiceConfigurer

It exposes deployments based on the last version and creates one service for each project in the
deployment. It reads configuration for service deployment from rules-deploy.xml in a project.

Data Type Representation in REST

REST services support the ISO-8601 standard for date type representation and accept the yyyy-MM-
dd'T'HH:mm:ss.SSSZ format. Time and time zones are optional in requests. Time zones in ISO-8601 are
represented as local time, with the location unspecified, as UTC, or as an offset from UTC. For more information
on the ISO-8601 standard, see https://en.wikipedia.org/wiki/ISO_8601.

To customize date format pattern, define the jacksondatabinding.defaultDateFormat property in the
configuration element in rules.xml as follows:

<rules-deploy>

 ….

 <configuration>

 <entry>

 <string>jacksondatabinding.defaultDateFormat</string>

 <string>yyyyMMddHHmmss</string>

 </entry>

 </configuration>

</rules-deploy>

https://en.wikipedia.org/wiki/ISO_8601

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 27 of 43

The value for jacksondatabinding.defaultDateFormat supports the same syntax of the date time pattern as
SimpleDateFormat as described in
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html.

5.3 Multimodule with Customized Dispatching
There is an additional mode for the multimodule which allows handling dispatching between modules by user’s
own logic. That means OpenL Tablets passes the control of selection of the needed module to user’s own class.

To adjust multimodule with user’s own dispatching, proceed as follows:

1. Create Java interface representing the required rules.

2. For each method from the interface, determine the dispatching:

• For methods that represents Data tables, provide implementation of
org.openl.rules.ruleservice.publish.cache.dispatcher.ModuleDispatcherForData and mark
that method by the org.openl.rules.ruleservice.publish.cache.dispatcher.DispatchedData
annotation.

• For methods that represent Rules, provide implementation of
org.openl.rules.ruleservice.publish.cache.dispatcher.ModuleDispatcherForMethods and
mark that method by the
org.openl.rules.ruleservice.publish.cache.dispatcher.DispatchedMethod annotation.

3. Create implementation of
org.openl.rules.ruleservice.publish.RuleServiceInstantiationStrategyFactory that returns
DispatchedMultiModuleInstantiationStrategy instead of a lazy multimodule, by default, and register it
in openl-ruleservice-override-beans.xml.

Notes:

• ModuleDispatcherForData and ModuleDispatcherForMethods must have a public constructor without

parameters. The aim of these classes is to select the needed Module according to the Runtime context and the
executed method. This means the rule name and arguments for the method representing Rule, and Data table for the
method representing data.

• If a dispatched multimodule is used, the interface with the annotated methods is obligatory, otherwise an exception is
given.

• If a getter and setter for specific Data is available simultaneously, only one of them can be annotated.

• Different dispatching logic for different methods can be provided.

• See example in org.openl.rules.ruleservice.multimodule.DispaspatchedMultiModuleTest.

5.4 Dynamic Interface Support
OpenL Tablets Web Services supports interface generation for services at runtime. This feature is called Dynamic
Interface Support. If static interface is not defined for a service, the system generates it. The system uses an
algorithm that generates an interface with all methods defined in the module or, in case of a multimodule, in
the list of modules.

This feature is enabled by default. To use a dynamic interface, do not define a static interface for a service.

It is not a good practice to use all methods from a module in a generated interface because of the following
limitations:

https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 28 of 43

• All return types and method arguments in all methods must be transferrable through network.

• An interface for web services must not contain the method designed for internal usage.

The system provides a mechanism for filtering methods in modules by including or excluding them from the
dynamic interface.

This configuration can be applied to projects using the rules.xml file. An example is as follows:

<project>

 <!-- Project name. -->

 <name>project-name</name>

 <!-- OpenL project includes one or more modules. -->

 <modules>

 <module>

 <name>module-name</name>

 <!--

 Rules root document. Usually excel file on file system.

 -->

 <rules-root path="rules/Calculation.xlsx"/>

 <method-filter>

 <includes>

 <value>.*determinePolicyPremium.*</value>

 <value>.*vehiclePremiumCalculation.*</value>

 </includes>

 </method-filter>

 </module>

 </modules>

 <!-- Project's classpath. -->

 <classpath>

 <entry path="lib/*"/>

 </classpath>

</project>

For filtering methods, define the method-filter tag in the rules.xml file. This tag contains includes and
excludes tags. The algorithm is as follows:

• If the method-filter tag is not defined in the rules.xml, the system generates a dynamic interface with all
methods provided in the module or modules for multimodule.

• If the includes tag is defined for method filtering, the system uses the methods which names match a
regular expression of defined patterns.

• If the includes tag is not defined, the system includes all methods.

• If the excludes tag is defined for method filtering, the system uses methods which method names do not
match a regular expression for defined patterns.

• If the excludes tag is not defined, the system does not exclude the methods.

If OpenL Tablets Dynamic Interface feature is used, a client interface must also be generated dynamically at
runtime. Apache CXF supports the dynamic client feature. For more information on dynamic interface support
by Apache CXF, see http://cxf.apache.org/docs/dynamic-clients.html.

Note: If a project is empty (does not contain any method), it will not be available as a service.

5.5 Interface Customization through Annotations
This section describes interface customization using annotations. The following topics are included:

http://cxf.apache.org/docs/dynamic-clients.html

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 29 of 43

• Interceptors for Service Methods

• Endpoint Customization in REST

• Annotation Customization for Dynamic Interfaces

• Understandings Groups in Annotations

Interceptors for Service Methods

Interceptors for service methods can be specified using the following annotations:

• @ServiceCallBeforeInterceptor

This method annotation is defined before interceptors and the array of interceptors must be registered
in the annotation parameter. All interceptors must implement the
org.openl.rules.ruleservice.core.interceptors.ServiceMethodBeforeAdvice interface. The
main goal of these interceptors is adding additional logic before service method invocation, such as
validation for service method arguments or using additional logic of input types convention.

An example is as follows:
public class RequestModelValidator implements ServiceMethodBeforeAdvice {

 public void before(Method interfaceMethod, Object proxy,

 Object... args) throws Throwable {

 if (args == null || args.length == 0) {

 throw new IllegalArgumentException("Service method should have at least

one argument");

 }

 //other validation logic

 }

}

To register it in the service interface, proceed as follows:
@ServiceMethodBeforeAdvice({ RequestModelValidator.class })

Result doSomething(RequestModel request);

• @ServiceCallAroundInterceptor

This method annotation defines around interceptors and the array of interceptors must be registered in
the annotation parameter. All interceptors must implement the
org.openl.rules.ruleservice.core.interceptors.ServiceMethodAroundAdvice interface. This
type of interceptors is used for adding around logic for service method invocation. An example is when
the arguments of the case service method must be converted to another type before using them in
service rules, and the results also require additional processing before return.

An example is as follows:
public class MyMethodAroundInterceptor implements ServiceMethodAroundAdvice<Response>

{

 @Override

 public Response around(Method interfaceMethod, Method proxyMethod, Object proxy,

Object... args) throws Throwable {

 Result res = (Result) proxyMethod.invoke(proxy, args);

 return new Response("SUCCESS", res);

 }

}

To register it in the service interface, proceed as follows:
@ServiceCallAroundInterceptor({ MyMethodAroundInterceptor.class })

Response doSomething(RequestModel request);

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 30 of 43

• @ServiceCallAfterInterceptor

This method annotation is defined after interceptors and the array of interceptors must be registered in the
annotation parameter. This type of interceptions can be used for result processing or error handling before
return by service method.

There are two types of after interceptors:

Inceptor types for the @ServiceCallAfterInterceptor annotation

Inceptor Description

After

Returning
Intercepts the result of a successfully calculated method, with a possibility of post processing of the
return result, including result conversion to another type. In this case, the type must be specified as the
return type for the method in the service class. The After Returning interceptors must inherit
org.openl.rules.ruleservice.core.interceptors.AbstractServiceMethodAfterReturni

ngAdvice.

After

Throwing
Intercepts a method that has an exception thrown, with a possibility of post processing of an error and
throwing another type of exception. The After Returning interceptors must inherit
org.openl.rules.ruleservice.core.interceptors.AbstractServiceMethodAfterThrowi

ngAdvice.

After Returning Advice example is as follows:
public class SpreadsheetResultConverter extends

 AbstractServiceMethodAfterReturningAdvice<ResponseDTO> {

 @Override

 public ResponseDTO afterReturning(Method interfaceMethod,

 Object result, Object... args) {

 SpreadsheetResult spreadsheetResult = (SpreadsheetResult) result;

 return mapSpreadsheetResultToResponseDTO(spreadsheetResult);

 }

 private ResponseDTO mapSpreadsheetResultToResponseDTO(SpreadsheetResult result) {

 ResponseDTO response = new ResponseDTO();

 response.setPremium((Double) result.getFieldValue("$Value$PremiumStep"));

 // Do some other mapping logic...

 return response;

 }

}

After Throwing Advice example is as follows:
public class ExceptionHandlingAdvice extends

 AbstractServiceMethodAfterThrowingAdvice <ResponseDTO> {

 private static final Logger LOG = LoggerFactory

 .getLogger(ExceptionHandlingAdvice.class);

 @Override

 public ResponseDTO afterThrowing(Method iMethod, Exception t, Object... args) {

 LOG.error(t.getMessage(), t);

 return new ResponseDTO("INTERNAL_ERROR", t.getMessage());

 }

}

To register it in the service interface, proceed as follows:
@ServiceCallAfterInterceptor({ SpreadsheetResultConverter.class,
 ExceptionHandlingAdvice.class })
ResponseDTO doSometing(Request request);

• @ServiceExtraMethod

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 31 of 43

This method annotation defines a proxy for the extra method absent in OpenL rules. The proxy must
implement org.openl.rules.ruleservice.core.annotations.ServiceExtraMethodHandler
interface, and it exposes methods that differ in signature with the rules or do not exist in the Excel
sheet.

For example:

Excel contains String hello(String) method and this method should be proxied via
String hello(Integer).

The proxy class has access to the classes generated for OpenL Datatypes. It can be used when creating
mapping between OpenL model and external model, for example:

 public static class LoadClassExtraMethod implements ServiceExtraMethodHandler<Object> {

 @Override

 public Object invoke(Method interfaceMethod, Object serviceBean, Object... args)

throws Exception {

 // MyBean is Datatype defined in OpenL

 Class<?> myBeanClass = Thread.currentThread().getContextClassLoader()

 .loadClass("org.openl.generated.beans.MyBean");

 Object myBean = myBeanClass.newInstance();

 // … Do some mapping below and then return result

 return myBean;

 }

 }

Note: Java byte code does not store arguments names in interfaces, so they have names like 'arg0', 'arg1', etc. If you
want request parameters to have more meaningful names, use @Name annotation. This annotation is used
together with @ServiceExtraMethod to define “pretty” names REST services instead of 'arg0', 'arg1'...

Required Maven dependency for OpenL Web Services annotations is as follows:
<dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.annotation</artifactId>

 <version>${openl.version}</version>

 <scope>provided</scope>

</dependency>

Note: The Provided scope is used because this dependency already exists in OpenL Tablets Web Service and it must not
be included in the deployment distributive to avoid class duplication in Java Classloader.

Endpoint Customization in REST

By default, URL method path and request method type are generated automatically regarding service method
declaration. URL method path equals the service method name and request method type depends on service
method arguments: if the service method has at least one argument, a request method type is set to POST,
otherwise, to GET.

The following JAX-RS annotations can be used to override the default behavior of service method publishing:

JAX-RS annotations o override the default behavior of service method publishing

Annotation Import details

@POST import javax.ws.rs.POST;

@GET import javax.ws.rs.GET;

@Path import javax.ws.rs.Path;

• @POST

@POST annotation overrides a default method type. Service methods annotated @POST accepts only POST
requests. Usage example is as follows:

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 32 of 43

@POST

MyResponse someMethod();

• @GET

@GET annotation overrides a default method type. Service method annotated @GET accepts only GET
requests. Usage example is as follows:
@GET

MyResponse someMethod(MyType myType);

• @Path

@Path annotation overrides a default URL method path. Usage example is as follows:
@Path(“/customPrefix/someMethod”)

MyResponse someMethod(MyType myType);

Required Maven dependency is as follows:

<dependency>

 <groupId>javax.ws.rs</groupId>

 <artifactId>javax.ws.rs-api</artifactId>

 <version>2.0.1</version>

</dependency>

Note: It is not necessary to declare pairs of @POST + @Path or @GET + @Path because OpenL Tablets provides the
capability to define a single annotation and the other one is generated by default.

Annotation Customization for Dynamic Interfaces

Annotation customization can be used for dynamically generated interfaces. This feature is only supported for
projects that contain the rules-deploy.xml file. To enable annotation customization, proceed as follows:

1. Add the annotationTemplateClassName tag to rules-deploy.

An example is as follows:
<rules-deploy>

 <isProvideRuntimeContext>true</isProvideRuntimeContext>

 <isProvideVariations>false</isProvideVariations>

 <serviceName>dynamic-interface-test3</serviceName>

 <annotationTemplateClassName>org.openl.ruleservice.dynamicinterface.test.MyTempl

ateClass</annotationTemplateClassName>

 <url></url>

</rules-deploy>

2. Define a template interface with the annotated methods with the same signature as in the generated
dynamic interface.

This approach supports replacing argument types in the method signature with types assignable from the
generated interface. For example, consider the following methods in the generated dynamic interface:
void someMethod(IRulesRuntimeContext context, MyType myType);

void someMethod(IRulesRuntimeContext context, OtherType otherType);

Add an annotation to the first method using a signature in the template interface as follows:
@ServiceCallAfterInterceptor(value = { MyAfterAdvice.class })

void someMethod(IRulesRuntimeContext context, MyType myType);

If MyType is generated in the runtime class, use a type that is assignable from the MyType class.

An example is as follows:
@ServiceCallAfterInterceptor(value = { MyAfterAdvice.class })

void someMethod(IRulesRuntimeContext context, @AnyType(".*MyType") Object myType);

Note that this example uses the @AnyType annotation. If this annotation is skipped, this template method is
applied to both methods, because Object is assignable from both types MyType and OtherType.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 33 of 43

The @AnyType annotation value is a Java regular expression of a canonical class name. Use this annotation if
more details are required to define a template method.

Note: A user also can use class level annotations for a dynamically generated class. It can be useful for JAXWS or JAXRS
interface customization.

Understandings Groups in Annotations

The Groups in annotations feature allows developers to use annotations for intercepting service methods. For
more information on intercepting service methods, see Interceptors for Service Methods.

The system uses such markup for interceptor in cases that require additional control for interface intercepting.
Usually it makes sense in requirements when one OpenL Rules project is used by two or more Rule Service-
based applications at the same time. For example, there are two applications using one repository with the
same projects, where the first application requires logging invocations to a database, and this logic is
implemented via interceptors, and the second application does not need this logic and misses classes
implementing this logic in the classpath. The new feature allows both applications to use the same project
without failure. In this example, all interceptors implementing logging logic must be marked up with a separate
group, and all marked interceptors are skipped by the appropriate application.

To support more than one interceptor type for a method, the following annotations are introduced:

• ServiceCallBeforeInterceptors

• ServiceCallAroundInterceptors

• ServiceCallAfterInterceptors

These annotations must be declared with an appropriate array of annotations as described in Interceptors for
Service Methods.

By default, the system uses interceptors that belong to any group. To configure the system to use specific
groups, modify * in the ruleservice.datasource.groups property. These groups will be used for projects that
have no project level definition for groups. To define groups on the project level, use the rules-deploy.xml
project deployment file.

Note: Use comma separated groups if more than one group must be used at the same time. The following groups are
supported:

Group types for interceptor annotations

Group Description

All This group is used to mark the interceptor to be used by all systems. This is a default option
and all interceptors belong to this group if group markup is missing.

RULESERVICE,

WEBSERVICE,

GROUP1,GROUP2,

GROUP3

Logically these groups are the same, but it is recommended to use the WEBSERVICE group
for the OpenL Tablets Web Services application and the RULESERVICE group for an
embedded solution.

5.6 JAR File Data Source
If rule projects and the rules.xml project descriptor are packed into a JAR file and placed in the classpath, these
projects are deployed in the configured data source at the application launch.

Proceed as follows:

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 34 of 43

1. Put the JAR file with the project to \<TOMCAT_HOME>\webapps\<web services file name>\WEB-INF\lib.

2. In the application.properties file, set up the ruleservice.datasource.deploy.classpath.jars =
true

Note: Project deployment is skipped if the data source already contains the project with the same name.

5.7 Data Source Listeners
A data source registers data source listeners and notifies some components of the OpenL Tablets Web Services
frontend about modifications. The only available event type on the production repository modification is about
newly added deployment.

A service manager is always a data source listener because it must handle all modifications in the data source.

Users can add their own listener implementing org.openl.rules.ruleservice.loader.DataSourceListener
for additional control of data source modifications with the required behavior and register it in data source.

5.8 Service Publishing Listeners
The OpenL Tablets Rule Service solution uses
org.openl.rules.ruleservice.publish.MultipleRuleServicePublisher class implementation as a main
publisher to support multiple publishers in the system. This publisher is configured as the following Spring bean:

<bean id="ruleServicePublisher"

class="org.openl.rules.ruleservice.publish.MultipleRuleServicePublisher">

 <property name="defaultRuleServicePublishers">

 <list>

 a list of all supported publishers by default (For example SOAP, REST,

RMI if publisher type is not defined for project)

 </list>

 </property>

 <property name="supportedPublishers">

 <map>

 <entry key="WEBSERVICE" value-

ref="webServiceRuleServicePublisher"/>

 <entry key="RESTFUL" value-

ref="JAXRSServicesRuleServicePublisher"/>

 <entry key="RMI" value-ref="RMIServicesRuleServicePublisher"/>

 </map>

 </property>

 <property name="listeners">

 <bean class="org.openl.rules.ruleservice.conf.BeanCollectionFactoryBean">

 <property name="beanType"

value="org.openl.rules.ruleservice.publish.RuleServicePublisherListener" />

 </bean>

 </property>

 </bean>

Service publishing listeners notify about the deployed or un-deployed OpenL Tablets projects. Users can add
their own listeners implementing
org.openl.rules.ruleservice.publisher.RuleServicePublisherListener for additional control of
deploying and un-deploying projects with the required behavior and add them to Spring configuration. The
org.openl.rules.ruleservice.conf.BeanCollectionFactoryBean bean automatically finds all listeners in
the Spring context and registers them in the service publisher.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 35 of 43

The org.openl.rules.ruleservice.publisher.RuleServicePublisherListener interface has the following
methods:

Method in org.openl.rules.ruleservice.publisher.RuleServicePublisherListener

Inceptor Description

onDeploy(OpenLService) Invoked each time when the OpenL Tablets service is deployed with the
publisher that fires this listener.

onUndeploy(String serviceName) Invoked each time when the service with the defined name is un-deployed.

5.9 Variations
In highly loaded applications, performance of execution is a crucial point in development. There are many
approaches to speed up the application. One of them is to calculate rules with variations.

A variation stands for additional calculation of the same rule with a slight modification in its arguments.
Variations are very useful when a rule must be calculated several times with similar arguments. The idea of this
approach is to once calculate rules for particular arguments and then recalculate only the rules or steps that
depend on the modified, by variation, fields in those arguments.

The following topics are included:

• Variation Algorithm

• Predefined Variations

• Variations Factory

• Variations as Rules

• Example

Variation Algorithm

A rule that can be calculated with variations must have the following methods in a service class:

• original method with a corresponding rule signature

• method with injected variations

The method enhanced with variations has a signature similar to the original method. Add the argument of
the org.openl.rules.variation.VariationsPack type as the last argument. The return type must be
generic org.openl.rules..variation.VariationsResult<T>, where T is the return type of the original
method.
The VariationsPack class contains all required variations to be calculated. The VariationsResult<T>
class contains results of the original calculation, without any modifications of arguments, and all calculated
variations that can be retrieved by variation ID. There can be errors during calculation of a specific variation.
There are two methods to get result of a particular variation:

Methods for getting result of a particular variation

Method Description

getResultForVariation(String variationID) Returns the result of a successfully calculated
variation.

getFailureErrorForVariation(String variationID) Returns the corresponding error message

Note: When using a user’s own service class instead of the one generated by default, the original method must be defined
for each method with variations.

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 36 of 43

Note: The result of original calculation can be retrieved in the same manner as for all variations, by using the special
Original calculation’ ID in code as
org.openl.rules.project.instantiation.variation.NoVariation.ORIGINAL_CALCULATION.

Predefined Variations

A variation typically has a unique ID and is responsible for modifying arguments and restoring original values.
The ID is a String value used to retrieve the result of the calculation with this variation.

By default, the variation’s abstract class org.openl.rules.project.instantiation.variation.Variation
has two methods, applyModification and revertModifications. The first method modifies arguments; the
second rolls back the changes. For this purpose, a special instance of Stack is passed to both these methods: in
the applyModification method, the previous values must be stored; in revertModifications, the previous
values can be retrieved from the Stack and saved into arguments.

There are several types of predefined variations in the org.openl.rules.variation package:

Predefined variation types in the org.openl.rules..variation package

Variation type Description

NoVariation Empty variation without any modifications. It is used for the original calculation and has a
predefined Original calculation ID.

ArgumentReplacementV

ariation
Variation that replaces an entire argument. It was introduced because JXPathVariation
cannot replace a value of a root object, or argument. The argument index, value to be set
instead of the argument, and ID are required to construct this variation.

JXPathVariation Variation that modifies an object field or replaces an element in the array defined by the
special path. JXPath is used to analyze paths and set values to corresponding fields, therefore
use JXPath-consistent path expressions. The following data is required for this variation:

• index of the argument to be modified

• path to the field that must be modified in the JXPath notation

• value to be set instead of the original field value

• ID

For more information on JXPath, see http://commons.apache.org/jxpath/.

ComplexVariation Variation that combines multiple variations as a single variation. It is applicable when
different fields or arguments must be modified.

DeepCloningVariation Variation used to avoid reverting changes of a specific variation that will be delegated to
DeepCloningVariation. This variation clones user’s arguments and thus allows avoiding
any problems caused by changes in arguments.

This variation is not recommended because of performance drawbacks: the argument
cloning takes time so the variations usage can be useless.

If predefined implementations do not satisfy user needs, implement user’s own type of variation that inherits
the org.openl.rules..variation.Variation class. Custom implementations can be faster than the
predefined variations in case they use direct access to fields instead of a reflection as in JXPathVariation.

Note: Data binding for custom implementations of variation must be provided to pass the variations through SOAP in
OpenL Tablets Web Services.

Variations Factory

The org.openl.rules.project.VariationsFactory class is a utility class for simple creation of predefined
variations. It uses the following arguments:

http://commons.apache.org/jxpath/

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 37 of 43

Variations factory arguments

Argument Description

variationId Unique ID for a variation.

argumentIndex 0-based index of an argument to be modified.

path Path to the field to be modified, or just a dot . to modify the root object, that is, the argument.

valueToSet Value to set by path.

cloneArguments Identifier of whether cloning must be used.

Usually VariationsFactory creates the JXPathVariation variation which covers most cases of variations
usage. When a dot . is specified as a path, ArgumentReplacementVariation is constructed. The
cloneArguments option says to VariaitonsFactory to wrap created variation by DeepCloninigVariation.

An alternative way is to use a special VariationDescription bean that contains all fields described previously
in this section. It is useful to transmit a variation in OpenL Tablets Web Services and define variations in rules.

Variations as Rules

The process of determining the variations is a kind of decision making process and can be represented in the
form of rules. A user can write rules that define variations according to the input arguments. Then such rules are
used as a variations provider during execution. That means, the OpenL engine passes an argument to the
particular rule that has the same signature as the rule to be calculated with variations that returns a set of
variation descriptions that will be used to create variations.

To write variations in rules, proceed as follows:

1. Define a special rule that returns VariationDescription[] and takes arguments similar to the method that
must be calculated with variations.

All VariationDescriptions returned from the rule are passed to VariationsFactory as described in
Variations Factory to construct variations and add them to initial VariationsPack.

2. Add the import of org.openl.rules.variation package into the Environment Table to make
VariationDescription available for rules.

3. Mark methods with variations by the special annotation
@VariationsFromRules(ruleName = "<name of the rule from the first step>")

Warning: The method for retrieving variations must be defined in a service class.

4. Enable variations in Service Configurer and data binding.

By default, there is the ruleservice.isSupportVariations option in application.properties that
must be set to true. It is passed to Service Configurer to create services with variations support and to
AegisDatabindingConfigurableFactoryBean that registers bindings for all predefined variation classes.

Note: When methods with @VariationsFromRules annotation are called, VariationsPack can be null. In this case,
only variations from rules are used. Otherwise, if a non-null VariationsPack is provided in the arguments, all
variations are calculated: the variations from rules and from VariationsPack in arguments.

Example

Consider rules that calculate premium for a policy:

Spreadsheet SpreadsheetResult processPolicy(Policy policy)

There is a special method for variations from rules:

OpenL Tablets Rule Service Usage and Customization OpenL Tablets Web Services Customization

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 38 of 43

Method VariationDescription[] processPolicyVariations(Policy policy)

To calculate premium with variations from rules, the service class must contain the following methods:

• SpreadsheetResult processPolicy(Policy policy);//original method.

• @VariationsFromRules(ruleName = "processPolicyVariations")
• VariationsResult<SpreadsheetResult> processPolicy(Policy policy, VariationsPack

variations);//method enhanced with variations.

• VariationDescription[] processPolicyVariations(Policy policy);//method for retrieving the
variations from rules.

OpenL Tablets Rule Service Usage and Customization Appendix A: Tips and Tricks

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 39 of 43

6 Appendix A: Tips and Tricks
This appendix provides useful additional information on OpenL Tablets Web Services usage and customization
and includes the following topics:

• Using OpenL Tablets Web Services from Java Code

• Using OpenL Tablets REST Services from Java Code

6.1 Using OpenL Tablets Web Services from Java Code
This section illustrates how to write a client code that invokes OpenL Tablets Web Services projects. Another
way can be used to invoke services, but it is recommended to use Apache CXF framework to prevent additional
effort for data binding.

A project in OpenL Tablets Web Services can be exposed via a static interface or dynamic interface generated in
runtime. A client code is different in each case. If the project uses a static interface, use the ClientFactoryBean
class from CXF. For more information on using CXF for a static interface, see CXF documentation.

The following example illustrates client code generation for the MyClass static interface:

ClientProxyFactoryBean clientProxyFactoryBean = new ClientProxyFactoryBean();

clientProxyFactoryBean.setServiceClass(MyClass.class);

clientProxyFactoryBean.setWsdlLocation(getAddress() + "?wsdl");

//OpenL databinding factory

AegisDatabindingFactoryBean aegisDatabindingFactoryBean = new AegisDatabindingFactoryBean();

//Set variations support. Recommend to use the same value as a project in server. Can’t be

false, if service uses variations feature.

aegisDatabindingFactoryBean.setSupportVariations(true);

aegisDatabindingFactoryBean.setWriteXsiTypes(true);

//In case you need custom binding classes.

Set<String> overideTypes = new HashSet<String>();

overideTypes.add(<Some class>.class.getCanonicalName());

aegisDatabindingFactoryBean.setOverrideTypes(overideTypes);

clientProxyFactoryBean.setDataBinding(aegisDatabindingFactoryBean.createAegisDatabinding());

MyClass myClass =(MyClass) clientProxyFactoryBean.create();

A dynamic client can be used for both static interface and dynamic interface generated in runtime configuration.
A dynamic client is a feature of CXF framework. For dynamic interface, use JaxWsDynamicClientFactory
factory. For more information on using CXF for a dynamic interface, see CXF documentation.

The following example illustrates creation of a dynamic client:

JaxWsDynamicClientFactory dynamicClientFactory = JaxWsDynamicClientFactory.newInstance();

ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader();

List<String> bindingFiles = new ArrayList<String>() {

 private static final long serialVersionUID = 1L;

 {

 add("binding.xml");

 }

 };

Client = dynamicClientFactory.createClient(<Service WSDL URL>, bindingFiles);

Binding.xml file content is as follows:

<jaxb:bindings version="2.2" xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

OpenL Tablets Rule Service Usage and Customization Appendix A: Tips and Tricks

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 40 of 43

 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <jaxb:globalBindings generateElementProperty="false" collectionType="indexed"/>

</jaxb:bindings>

6.2 Using OpenL Tablets REST Services from Java Code
This section describes how to write a client code that invokes OpenL Tablets REST services projects. Another way
can be used to invoke services, but it is recommended to use Apache CXF framework to prevent additional effort
for data binding.

The following example illustrates client code generation for the JSON content type:

JacksonObjectMapperFactoryBean jacksonObjectMapperFactoryBean = new

JacksonObjectMapperFactoryBean();

jacksonObjectMapperFactoryBean.setEnableDefaultTyping(true);

Set<String> overrideTypes = new HashSet<String>();

overrideTypes.add(SomeClass.class.getName());

jacksonObjectMapperFactoryBean.setOverrideTypes(overrideTypes);

ObjectMapper mapper = jacksonObjectMapperFactoryBean.createJacksonDatabinding();

final JacksonJsonProvider jsonProvider = new JacksonJsonProvider();

WebClient webClient = WebClient.create#REST service url#,

 new ArrayList<Object>() {

 private static final long serialVersionUID = 5636807402394548461L;

 {

 add(jsonProvider);

 }

 });

webClient.type(MediaType.APPLICATION_JSON);

Response response = webClient.get();

Note: If you use POST request for more than one argument, create a DTO that contains field with method argument names
and send this DTO object via webClient.post() method.

OpenL Tablets Rule Service Usage and Customization Appendix B: Types of Exceptions in OpenL Tablets Web Services

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 41 of 43

Appendix B: Types of Exceptions in OpenL Tablets
Web Services
The following table describes exception types in OpenL Tablets Web Services:

Exception types in OpenL Tablets Web Services

Cause Status code REST SOAP

error("Some message")
in rules

400 {

 message :

"Some message",

 type :

"USER_ERROR"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Some

message</faultstring>

 <detail>

 <type>USER_ERROR</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Runtime execution error
in OpenL rules, such as
NPE, CCE, and
DivByZero.

500 {

 message :

"Cannot convert

'1ab2' to

Double",

 type :

"RULES_RUNTIME"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Cannot convert '1ab2' to

Double</faultstring>

 <detail>

 <type>RULES_RUNTIME</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Compilation and parsing
errors.

500 {

 message :

"Missed

condition column

in Rules table",

 type :

"COMPILATION"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Missed condition column

in Rules table</faultstring>

 <detail>

 <type>COMPILATION</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Other exception outside
the OpenL engine, such
as NPE, CCE, and
AccessException.

500 {

 message :

"Cannot be

null",

 type :

"SYSTEM"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Cannot be

null</faultstring>

 <detail>

 <type>SYSTEM</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

OpenL Tablets Rule Service Usage and Customization Appendix B: Types of Exceptions in OpenL Tablets Web Services

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 42 of 43

Exception types in OpenL Tablets Web Services

Cause Status code REST SOAP

Validation errors in
input parameters, such
as a value outside of a
valid domain or wrong
value in the context.

500 {

 message :

"'Mister' is

outside of valid

domain ['Male',

'Female']",

 type :

"RULES_RUNTIME"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>'Mister' is outside of

valid domain ['Male',

'Female']</faultstring>

 <detail>

 <type>RULES_RUNTIME</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

OpenL Tablets Rule Service Usage and Customization Appendix C: Swagger Support

© 2004-2020 OpenL Tablets
OpenL Tablets 5.22 Page 43 of 43

Appendix C: Swagger Support
Swagger is an open-source software framework backed by a large ecosystem of tools that helps developers
design, build, document, and consume RESTful Web services. While most users identify Swagger by the Swagger
UI tool, the Swagger toolset includes support for automated documentation, code generation, and test-case
generation. For more information on Swagger, see https://swagger.io/docs/.

In OpenL, Swagger is used for testing services. It allows directly accessing project methods, data types, and
methods, and enables simple, convenient, and quick testing of rules deployed as services.

To use Swagger, in OpenL Tablets Web Services, click the Swagger (UI) link, select the required rule, click Try it
out, enter input parameters, and click Execute.

Figure 4: Using Swagger

https://swagger.io/docs/

	1 Preface
	1.1 Audience
	1.2 How This Guide Is Organized
	1.3 Related Information
	1.4 Typographic Conventions

	2 Introduction
	3 OpenL Tablets Rule Service
	3.1 Adding Dependencies into the Project
	3.2 Configuring Spring Integration for OpenL Tablets Rule Service
	Adding a Bean Configuration File to the Spring Context Definition
	Simple Java Frontend Implementation

	3.3 Customizing and Configuring OpenL Tablets Rule Service

	4 OpenL Tablets Web Services Configuration
	4.1 OpenL Tablets Web Services Default Configuration
	4.2 OpenL Tablets Web Services Default Configuration Files
	4.3 Service Manager
	4.4 Configuration Points
	Configuring a Data Source
	JCR Repository
	Database Repository
	File System Data Source
	Amazon AWS S3 Repository
	Version in Deployment Name
	Service Exposing Method
	CXF Web Services Implementation
	CXF REST Services Implementation
	RMI Services Implementation

	Configuring System Settings
	Custom Spreadsheet Type
	Dispatching Table Properties
	Table Dispatching Validation Mode

	Configuring a Number of Threads to Rules Compilation
	Logging Requests to OpenL Tablets Web Services and Their Responds
	Enabling and Using Logging
	Storing Log Records on Apache Cassandra

	Configuring REST Services Settings
	Configuring RMI Services Settings
	Configuring Aegis Databinding
	Configuring the Instantiation Strategy
	Configuring the Deployment Filter

	5 OpenL Tablets Web Services Customization
	5.1 OpenL Tablets Web Services Customization Algorithm
	5.2 Service Configurer
	Understanding Service Configurer
	Deployment Configuration File Used by Service Configurer
	Service Description
	Data Type Representation in REST

	5.3 Multimodule with Customized Dispatching
	5.4 Dynamic Interface Support
	5.5 Interface Customization through Annotations
	Interceptors for Service Methods
	Endpoint Customization in REST
	Annotation Customization for Dynamic Interfaces
	Understandings Groups in Annotations

	5.6 JAR File Data Source
	5.7 Data Source Listeners
	5.8 Service Publishing Listeners
	5.9 Variations
	Variation Algorithm
	Predefined Variations
	Variations Factory
	Variations as Rules
	Example

	6 Appendix A: Tips and Tricks
	6.1 Using OpenL Tablets Web Services from Java Code
	6.2 Using OpenL Tablets REST Services from Java Code

	Appendix B: Types of Exceptions in OpenL Tablets Web Services
	Appendix C: Swagger Support

